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Bifurcations in a sidebranch surface of a free-growing dendrite

P. K. Galenko, M. D. Krivilyov, and S. V. Buzilov
Institute of Mathematical Simulation, Udmurt State University, 71 Krasnogeroyskaya Street, Izhevsk 426034, Russian Federa

~Received 24 April 1996; revised manuscript received 14 August 1996!

We consider a model of a free-growing dendrite in a binary dilute system solidifying under nonequilibrium
conditions. The numerical solution of the model equations was obtained by finite-difference technique on a
two-dimensional square lattice. A special case in which the liquid-solid surface tension is zero and a stabilizing
action on the dendritic form is produced by both the surface kinetics and the anisotropic influence of the
computational lattice was studied. We find that, depending on the initial undercooling and computational lattice
scale, an interesting behavior in the dendrite sidebranch surface is expected. Except for the evolution of the
sidebranch surface realized by regularly repeated doubling of the distances between the secondary branches by
the Feigenbaum scenario, there is a clear tendency for the formation of a needlelike dendrite, structured after
a Hopf-type bifurcation, chaotic structure with random period of branching, packet structure with the branching
period that is not defined by the Feigenbaum scenario. Simulation data are correlated with known conclusions
of the thermodynamical approach to phase transformations, marginal stability theory, and analytical treatments
of the local model of the boundary layer. Satisfactory qualitative agreement with the results given by the
continuum diffusion-limited aggregation model and the modeling of three-dimensional heat flow dendrites has
been found.@S1063-651X~97!00301-2#

PACS number~s!: 05.70.Fh, 68.70.1w
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I. INTRODUCTION

Dendrites are recognized as one manifestation of
structural behavior of a dissipative system in condensed
dia under nonequilibrium conditions@1#. The detailed study
of natural dendritic growth@2# and modeling of dendritic
structures@3–5# lead to an understanding of the main pec
liarities of tip growth and sidebranch formation during s
lidification of undercooled liquids. In particular, the margin
stability theory of dendrite growth@6,7# shows that the tip is
the only point on a dendrite that is stable and sidebra
formation is due to the instability of all other positions of
phase interface. Therefore, among the major types of patt
that typically occur during unstable interfacial growth, de
drites are patterns with a symmetry of varying degree
without tip splitting~see Ref.@1# and Ref.@8#, pp. 277–278!.

The search of the dynamical stability criteria of the de
drite tip and the condition of dendrite sidebranch surfa
formation lead to the general problem of mode selection
dendritic patterns@2,9#. As in pattern formation during direc
tional solidification @10#, there is a selection in the side
branch surface of a free-growing dendrite, and the wa
length between its secondary branches depends
undercooling in a system@1–5#.

In a computer model of a free-growing dendrite, Uma
sev, Vinogradov, and Borisov@3# showed that the evolution
of the wave sidebranch structure has a regular doubling
the periodl between the fast-growing secondary branches
the Feigenbaum scenario. The periodl varies as double in-
creases,l→2l→4l, along the main stem of the dendrite@3#.
After a thermodynamical study of isolated adiabatic syste
Umantsev and Olson@11# remarkably stated that the mech
nism of sequential period doubling is robust for coarsen
processes in systems with a conserved quantity. In addi
Umantsevet al. @3# noted that, besides the Feigenbaum
551063-651X/97/55~1!/611~9!/$10.00
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furcation, which leads to the period doublingl→2l in the
secondary branches of the free dendrite, the sidebranch
face can have a shorter branching period, i.e., the structur
the secondary branches becomes more dense. The den
can also have an abnormally long steady-state undistu
area behind the tip@3#.

In one dendritic model of Galenko and Zhuravlev@1#, an
increase in the periodl→2l for the fast-growing branche
has also been found. After a smooth nonbranching area
hind the tip, the surface of the needlelike crystal becom
morphologically unstable. This instability defines the orig
and development of the secondary branches by a Hopf-
bifurcation scenariol→l→l. Then the Feigenbaum transfe
l→2l→4l may proceed with an intermediate stage of
accidental change of the branching periodl→3l→2l
→6.5l→3l. As the initial undercooling increases, the e
largement of the lateral structure becomes the most adva
geous asl→3l→6l ~see Ref.@1#, p. 130!, and different
structures of the dendrite sidebranch surface can occur.

The major purpose of this paper is to establish a poss
morphological spectrum of the sidebranch surface after
furcations in the structure of a free-growing dendrite. W
show the results of computational experiments from whic
variety of virtual types of dendritic sidebranch surfaces ar
according to the initial undercooling in the system.

The paper is organized as follows. In Sec. II we introdu
the mathematical model of dendrite growth in a binary dilu
system. In Sec. III we give the results of the two-dimensio
modeling the free dendrite growth. Section IV is devoted
morphologies of the dendrite sidebranch surface that evo
from deeply undercooled binary liquid. In Sec. V we discu
the results of modeling the morphological spectrum and h
to grow an area nearest the tip of the free dendrite dur
branching of its surface. Finally, in Sec. VI we present
summary of our conclusions.
611 © 1997 The American Physical Society
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FIG. 1. Free dendrite calculated by the lattice model. The growth starts from the initial single seed of the solid phase placed at th
site of the lattice.~a! Various stages in the growth of a dendrite calculated using the initial undercoolingdT050.64 on the 1273127 lattice.
~b! Dendritic pattern on the 2213221 lattice. The initial undercoolingdT051.39.
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II. MODEL OF DENDRITIC GROWTH

The process of dendrite growth from a supercooled bin
diluted system can be described by the continuum mode@1#

]

]t
@~12G!CL1GkCL#5div@~12G!DL gradCL#, ~1!

G512expS 2E
t
~v/y!V dtD , ~2!

V5b~TA2T02mCL!, ~3!

CS5kCL . ~4!

HereCL andCS are the concentrations in the liquid and so
phases, respectively,G is the solid phase fraction,D is the
diffusion constant,V is the velocity of the liquid-solid inter-
face along the normal vector pointed towards the liquid,t is
the time,v is the liquid-solid interface inside the solidifyin
system,y is the two-phase bulk region,b is the kinetic co-
efficient of interface motion,TA is the temperature of solidi
fication of the system’s main component~pure substance!, T0
is the initial temperature in the system,m is the tangent of
the liquidus line slope on the diagram of phase state o
binary system, andk is the partition coefficient.

The isothermal conditions of dendritic growth imply th
for the characteristic heat conductivity scalel T5a/V, any
temperature inhomogeneity in the system is smoothed m
rapidly than the concentration inhomogeneities~a is the ther-
mal diffusivity in the system!. Thus the latent heat is ne
glected and the system of equations~1!–~4! describes non-
equilibrium solidification in isothermal conditions. Definin
the diffusion scale asl D5D/V ~D is the diffusion coeffi-
cient! and evaluatingD/a;1022 for nonmetallic substance
y

a

re

andD/a;531024 for metallic ones, we can get the estima
l D/ l T!1. Therefore, the present modeling is restricted
regions whose space scale is essentially larger than the
fusion mass transfer scale but limited by the temperat
conductivity scale.

The model we consider is a special case in which
liquid-solid surface tension equals zero under deep un
coolings. As it has been shown in Ref.@3#, the kinetics of the
particle attachment to the growth surface has a stabiliz
action on the growth velocity and the shape of the free d
drite under large undercoolings in the system. In such a c
the only physical parameter that defines the solution of E
~1!–~4! is the dimensionless undercoolin
dT05(TA2T02mC0)/TQ , whereC0 is the initial concen-
tration of the solute component in the binary syste
TQ5Q/¸ is the temperature of adiabatic solidification,Q is
the latent heat of solidification, anḑis the heat capacity.

We obtained the solution of Eqs.~1!–~4! by the finite-
difference technique on the two-dimensional square latt
A detailed numerical method of solution of the system
equations~1!–~4! was developed in the monograph@1# ~see
pp. 137–143 in Ref.@1#!. It should be noted that at high
undercoolings the stabilizing action of the surface ene
may be neglected and also imitated by the anisotropic in
ence of the computational lattice@1#. In such a case, the onl
computational parameter that influences the structure for
tion is the space lattice scale@1#.

In the calculations we chose the next physical consta
applicable to the metal-like binary system:TA51809 K,
C050.1 wt. %,m580 K/wt. %, k50.1, D5631028 m2/s,
Q5109 J/m3, ¸553106 J/~m3 K!, andb50.4 m/~s K!.

We chose the scaling length ashD5D/V0 , the time scale
astD5D/V 0

2, and the scale velocity asV05bTQ . The time
interval t of the simulation was chosen as 0.18tD and the
lattice scaleh52(Dt)1/2,hD , wherehD is the upper limit
of the lattice scaleh.
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FIG. 2. Coarsening structure at the later stage of the dendrite sidebranch surface formationdT051.39. The calculation was done on th
4513451 lattice. The initial seed of the solid phase was chosen at the right corner of the lattice. The inset shows~a! the smooth nearly
parabolic shape near the dendrite tip, which is characterized by the radiusR and ~b! the angled dendrite with the anglea.
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Taking into account these relations for scaling values
the model constants adopted above, the lattice scaleh be-
comes comparable to the value with the diffusion scalehD :
h50.85hD . The inequalityh,hD guarantees the appearan
of the dendrite structure determined by both the kinetics
the growth surface and the diffusion in the liquid.

By introducing the variableG that defines the phase sta
~liquid, 12G, or solid,G! of the system at each point and i
governing equation~2!, one can apply numerical method
that avoid the interface moving with the velocityV @see Eq.
~3!#. Since the liquid-solid interface width has a distance
several atomic dimensions@12#, we calculated the region be
tween the phases as a solidifying liquid-solid layer~0,G
,1! that has one lattice scaleh5y /v @1,3# @see Eq.~2!#.
Therefore, the value of the lattice scaleh was chosen to be
not smaller than some interatomic distance. That is the lo
limit of the lattice scaleh. In such a case, the discrete finit
difference analog of Eq.~1! describes the diffusion in the
liquid ~G50! and solidifying liquid-solid layer~0,G,1!,
which represents the liquid-solid interface.

In our lattice model the simulation of the growth proce
has been carried out according to the following rule@1,3,13#:
the solid phase can grow only on the solid phase form
before and a nucleation of crystals ahead of the solidifica
front is excluded. On the boundary of the lattice domain
condition of mass transfer being absence is set. At any p
of the solid phase the concentration remains the same du
the modeling and is described by Eq.~4!. Thus Eqs.~1!–~4!
describe the deterministic model of nonequilibrium grow
d
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patterns that can evolve with fourfold symmetry on t
square computational lattice.

III. RESULTS OF MODELING

Figures 1 and 2 show the modeling results of typical d
dritic patterns grown at different undercoolings. Figure 1~a!
clearly illustrates the transition from a compact to a bran
ing crystal structure with fourfold symmetry as the crys
grows larger. A similar change within cluster growth mo
phology is well known when the crossover from a comp
cluster to a fractal structure can occur in isotropic syste
@14#.

The result of the dendrite origin under a higher underco
ing is shown in Fig. 1~b!. The initial dense branching struc
ture on the main stems becomes unstable and the coarse
process begins. This process is characterized by the app
ance of fast-growing secondary branches. Evolution of
coarsening process leads to the origin of the large secon
branches on dendritic sidebranch surfaces~see Fig. 2!.

During the modeling, we observed a transition from t
smooth nearly parabolic shape near the dendrite tip t
sharp dendrite tip with planar areas away from it. The lat
is the so-called angled dendrite that was obtained within
framework of the local model of the boundary layer@15#. As
in the analytical treatment@15#, we also noticed that there
was a critical undercooling at which an angled dendrite w
planar areas behind the tip grew instead of a dendrite wi
smooth, nearly parabolic shape~see the inset in Fig. 2!. The
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614 55P. K. GALENKO, M. D. KRIVILYOV, AND S. V. BUZILOV
planar areas behind the tip have a certain anglea between
them@Fig. 2, inset~b!#. The value of this anglea depends on
undercooling and we observed an angle between planar a
up toa590° @see the dendritic tips that are at right angles
Figs. 1~b! and 2#.

Then, at some new critical undercooling the transiti
from the branching structure of the surface to a morpholo
cally smooth crystal structure occurs~it is a so-called globu-
lar transition; see Refs.@1–3#!. An analogous behavior of th
dendrite surface area behind the tip has also been consid
by means of the local model of the boundary layer@15#.

IV. MORPHOLOGICAL SPECTRUM
OF A FREE DENDRITE

For a detailed study of the dendrite sidebranch surface
consider the growth from an initially smooth planar fro
with one perturbation, i.e., with a single solid seed on
Having the better conditions for the growth, the seed per
bation grows faster than the planar front. The main solid
cation front retards progressively because of buildup of s
ute ahead of it. The result is the evolved structure of
dendritic type that forms under the conditions of a sm
influence from the concentration field ahead of the main
lidification front.

We calculated patterns on the 1813181 lattice in the re-
gion of undercoolings: 0.5,dT0,1.2. Figure 3 shows sche
matically the evolution of the sidebranch surface, i.e.,
secondary branches along the main stem of the dendrite
sus the initial undercooling in the system.

During the sidebranch surface formation the number
structure bifurcations depends on the initial undercooling.
the undercooling increases, the surface of the needle
crystal @see Fig. 4~a!# becomes unstable and undergoes
Hopf-type bifurcation. The result is the formation of th
dense structure of the secondary branches with the iden

FIG. 3. Scheme of the development of the sidebranch surfac
a free dendrite with the increase of the initial undercoolingdT0 in a
binary dilute system. The arrows show the direction of the und
cooling dT0 increase. The ‘‘needle-dendrite–packet’’ cycles in t
ranges 0.69<dT0<1.065 and 1.08<dT0<1.14 are shown. The
needle dendrite grows atdT050.69,1.08; the Hopf bifurcation oc
curs at dT050.89,1.09; the Feigenbaum bifurcation occurs
dT051.04,1.12; the packet origin is atdT051.065,1.14; chaos oc
curs atdT050.94,1.075,1.11,1.165; and the globular transition
curs atdT0>1.20.
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space periodl @see Fig. 4~b!#. In our model we obtained tha
l52h, i.e., the Hopf-type structure bifurcation leads to t
period between the secondary branches, which is equal to
doubled lattice scale.

A further increase in the undercooling leads to a rand
structure in the sidebranch surface~chaotic behavior in Fig.
3!. This chaotic stage is shown by the different, not consta
branching period occurring in the secondary structure
branches along the main stem of the dendrite. Then the d
drite with the doubling period 2l between the secondar
branches occurs@see Fig. 4~c!#. Every second branch slow
down by its growth velocity and every other second bran
will grow faster. It is clearly a Feigenbaum scenario in t
structure formation@3#. It should be noted that in this sce
nario the periodl between branches is equal to 3h and be-
tween the fast growing branches the period is 2l56h. The
increase in undercooling leads not only to a new bifurcat
in the sidebranch surface but also to an increase in the pe
between branches. The similar behavior 2l56h of the pe-
riod doubling along the main stem of the dendrite at differe
undercoolings was obtained in the model of growth of t
heat dendrite in a pure substance@3#. Thus, in our model, the
structure transition in the sidebranch surface of the dend
covers the way from the Hopf-type bifurcation to the Feige
baum bifurcation through the chaotic stage~see Fig. 3!.

As the initial undercooling increases, a structure of t
sidebranch surface arises, which we called ‘‘a packet str
ture.’’ In the morphological spectrum the packet structu
obtained is in the wake of the structure after the Feigenba
structure bifurcation~see Fig. 3!. The packet structure of the
sidebranch surface has the form of the fast-growing branc
between which a close-packed structure of slow-grow
secondary branches is situated@see Fig. 4~d!#.

After the chaotic behavior in the structure of the secon
ary branches at the undercoolingdT051.075, the cycle from
the needle crystal up to the packet structure recurs~see Fig.
3!. The first cycle, the needlelike-dendrite–packet structu
was obtained in the range of undercoolings 0.
<dT0<1.065. We observed the same second cycle in
range 1.08<dT0<1.14. After the cycle and chaotic behavio
in the secondary structure of branches atdT051.165, the
globular transition occurs at the undercoolingsdT0>1.20
~see Fig. 3!. We observed the globular transition as a tran
tion to the morphologically smooth growth front.

V. DISCUSSION

Considering the morphological spectrum of the dend
sidebranch surface, we chose intentionally relatively sm
calculating domains~1813181 lattice sites; see Fig. 4! that
were also limited by the temperature conductivity scale~see
Sec. II!. In essence, we show the results of the evolved s
branch surfaces that were formed during the initial stage
solidification. Indeed, if one follows the evolution of the de
dritic structure on the larger calculating domains, it is po
sible to discover the fast-growing secondary branches or
in the dense structure of the secondary branches@compare
the dendritic structures in Figs. 4~b!, 1~b!, and 2#. It is a
coarsening process in growth form. As a rule, the dista
between these secondary fast-growing branches is not
fined by a number that is a multiple of the doubled perio
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FIG. 4. Illustration of the different types of free-growing dendritic structures in the two-dimensional computer model:~a! a needlelike
dendrite atdT050.69,~b! a dendritic structure after a Hopf-type bifurcation in the sidebranch surface atdT050.89,~c! a dendritic structure
after a Feigenbaum bifurcation in the sidebranch surface atdT051.04, and~d! a packet structure of the dendrite sidebranch surface
dT051.065. Close to the dendritic surfaces, the concentration field in the liquid decreasing in the direction from light to dark color is
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i.e., more complex structures at the late stages of the cry
growth origin. As it was established in Liu and Goldenfe
modeling@13#, in the complex crystal growth process at t
late stage, both the nonlinear and the steady-state sele
principles are present. As applied to the results of our m
eling, this means the following. First, the tip is stable and
crystal surface is unstable~the steady-state selection prin
ciple or, in other words, the marginal stability princip
@6,7#!. Second, the coarsening process is conditioned by
interaction of the diffusion fields between the second
branches~nonlinear selection principle!.

Within the limits of the adopted assumptions and mo
tal

ion
-
e

e
y

l

constants the results of the present modeling clearly dem
strate that besides the evolution of the secondary bra
structure realized by regularly repeated doubling of distan
between the secondary branches, there is a clear tendenc
the formation of structures with random branching perio
packet structures with the branching period that is not
fined by the Feigenbaum scenario, needlelike crystal, and
structure after the Hopf-type bifurcation~see Figs. 3 and 4!.
This variety found in the discrete finite-difference analog
the continuum model~1!–~4! exhibits not only the mecha
nism of sequential period doubling as at the coarsening st
ture stages in a continuum isolated adiabatic system~see Ref.
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@11#!, but also other mechanisms of the dendrite surface
mation ~see Fig. 4!. In the present investigation when th
binary dilute system solidifies under isothermal conditions
is possible to suppose that near the hypercoolingdT0>1 or
behind the hypercoolingdT0.1 the nearly adiabatic system
and the adiabatic system are realized, respectively.
conserved quantity in the system is C0
5N21([(12G)CL1GCS], where ( is the sum over all
lattice sites andN is the total number of lattice sites. Th
results of our modeling~see Figs. 3 and 4! indicate that the
solidifying binary system has a crystal growth scenario
which the period doubling in the dendrite sidebranch surf
is not the only possible one. For example, the nonequilibri
coarsening process also leads to the packet structure@Fig.
4~d!#. The answer is the adjustment of the structure acco
ing to both the undercooling and the lattice scale.

When the shape of needlelike crystal@Fig. 4~a!# is carried
out beyond the threshold of morphological stability@1,2,5–
7,13# the origin of the secondary branches occurs@Fig. 4~b!#.
The distance between them isl. In our model we obtained
that l52h @Fig. 4~b!#, i.e., the Hopf-type structure bifurca
tion leads to a period between the secondary branches e
to the doubled lattice scale. This is explained by the fact t
the lattice scaleh chosen by us was a little smaller than t
diffusion scalehD that defines the scale of local instability
the growth form. If one acceptsh*>0.5hD , it is possible to
see that after the same modeling time the numerical valu
the distance between the secondary branches after the H
type bifurcation remains the same, i.e.,l54h*[2h.

An interaction of the diffusion fields of neighborin
branches leads to nonequilibrium coarsening of the seco
ary branches@see Fig. 4~c!#. This phenomenon consists in th
fact that every second branch slows down in its developm
and after some time may be ‘‘caught’’ by a neighbori
branch. As a result, the distance between fast-grow
branches increases and becomes equal to the period 2l56h.
The chaotic regime, as an adjustment of the structure acc
ing to the undercooling and simultaneously to the latt
scale, leads to the next type of bifurcation: the Hopf-ty
structure bifurcation gives way to the Feigenbaum scen
~see Fig. 3!. A further increase in the undercooling and i
teraction of the diffusion fields between the second
branches lead to a nontrivial coarsening of the sidebra
surface, i.e., to the packet structure of the second
branches. The distance between fast-growing branc
within the packet structure can be different and, gener
speaking, not a multiple of bifurcations of the period do
bling. Thus the different types of crystal structures may
pend on the lattice scaleh and the initial undercoolingdT0 in
a binary system~see also pp. 125–127 and Fig. 4.4 in R
@1#!.

In the behavior of structures of the growing crystals, u
ally three dynamic regimes are distinguished@16#: the nearly
equilibrium behavior~nonequilibrium crystal, the shape o
which is defined by the Curie-Wolff rule!, the ordering struc-
ture origin ~fine snowflake forms!, and the random structur
origin ~crystals with random period of branching or fractal!.
All these three types of structures were obtained in
model. However, they are distributed in such a way that
double structure cycle, the needlelike-dendrite–packet st
ture, occurs before the globular transition~Fig. 3!.
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A plausible explanation of the double structure cycle f
lows. As is well known, when the surface tension is zero
isotropic and surface kinetics is isotropic, dendritic grow
does not occur, but rather tip splitting of growing finge
@5,8,16,17#. With both surface tension and anisotrop
present, the unique stable needle crystal is selected from
continuous family of analytical solutions found by Ivantso
@18# and a dendrite having the secondary branches gr
with the velocity equal to the maximum value of the veloc
from the family @9,19#. Notwithstanding the fact that in ou
statement of the problem we assumed a zero surface ten
an anisotropy of surface kinetics was set by us at the leve
the computational lattice as soon as we passed from c
tinuum equations~1!–~4! to their finite-difference analogs
This leads to the dendritic growth of the crystal without t
splitting. Furthermore, the continuous family consisting
the needlelike crystals, dendrites after Hopf and Feigenba
bifurcations, and the packet structures is the spectrum of
tual crystal structures. From this continuous family t
unique structure is selected at fixed undercooling. As
needlelike shape of the dendrite is selected from the cont
ous family of the solutions@9,19,20#, the present numerica
solution also gives the discrete family of the above str
tures. Thus, for every virtual structure we obtained the d
crete family of stable growth form in the continuous fami
of the numerical solutions~see Fig. 3!.

In contrast to various investigations in which the tip r
dius was calculated in detail~see, for example, Refs.@2,5#!
by means of the well-known Ivantsov solution for a par
bolic dendrite@18#, in our investigation the shape near the t
was not parabolic. In our model the shape near the tip
came nearly parabolic in the region 0.05,dT0,0.1, while in
the process of growth of the dendrite the current underco
ing dT5(TA2T02mCL)/TQ on its surface gradually de
creased practically to zero.~In the region of the initial un-
dercoolingsdT0,0.005 the growth of the dendritic branche
was accompanied by the splitting of its tip!. In this connec-
tion, for the statement of the behavior of the tip growth w
calculated the total area of a certain nonbranching reg
behind the tip.

During the growth process we calculated the area of
nonbranching region all the way from the tip up to 7h from
it. We calculated the solid fractionG in all lattice sites that
were occupied by the solid~G51! and the liquid-solid~0,G
,1! phases. Shown in Fig. 5 is a dependence of the areaST
near the dendrite tip versus the modeling timetM . HereST is
the area equal to the total value of the solid phase in the s
and liquid-solid sites of the nonbranching region near the
and tM is the time equal to the quantity of the numeric
stepst of simulation.

We distinguished three stages in the evolution of the cr
tal: the nonbranching compact crystal, the developed d
dritic crystal, and the final stage of growth on the calculati
domain. These time intervals fromA to C are shown in Fig.
5. It can be seen that the area near the dendrite tip oscill
about some steady-state value. This area oscillates with
intervals determined by the beginning of the next branch
on the surface of the dendrite. An analogous oscillation
pendence was found in the continuum diffusion-limited a
gregation model with anisotropic surface tension@21# and in
the model of three-dimensional heat flow dendrites@22#.
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FIG. 5. Dependence of the
areaST of the nonbranching re-
gion behind the dendrite tip on th
time tM of numerical simulation.
The initial undercooling
dT050.24. HereA is the time pe-
riod where the compact crysta
grows,B is the time period of the
developed dendrite growth, andC
is the time period where the fina
stages of the dendrite growth oc
cur within a calculating domain.
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To try to smooth these oscillations, we also calcula
Eqs.~1!–~4! on a half time step 0.5t. However, oscillations
in ST remained the same by amplitude and their freque
corresponded to the origin of the secondary branches on
main stem of the dendrite as before. If these oscillations
not an artifact of the numerical method and solution of
problem, then we may interpret this result from the physi
viewpoint as follows.

Defining the tip velocity numerically, we obtained that th
diffusion inside the liquid@see Eq.~1!# and surface kinetics
@see Eqs.~2! and~3!# do not have a sharp correlation at o
time stept. In principle, this makes the tip velocity and th
crystal shape oscillate near the dendrite tip. Presented in
6 is a change in the current undercoolin
dT5(TA2T02mCL)/TQ at the tip and ahead of it durin
the stage of dendritic growth~time intervalB in Fig. 5!. It
can be seen that in our time-dependent model the underc
ing dT and also the tip velocityV @see Eq.~3!# oscillate

FIG. 6. Current undercoolingdT versus the numerical simula
tion time tM corresponding to 1, the liquid phase~G50! immedi-
ately ahead of the dendrite tip; and 2, the dendrite tip where
liquid-solid phase~0,G,1! is present. The initial undercooling
dT050.24.
d

y
he
re
e
l

ig.

ol-

weakly. In particular, this means that the accumulation of
substance, its removal, and its surface kinetics do not
simultaneously at the time stept. Notwithstanding that the
domains with the set, approximately similar, ranges of c
centration as long as severalh do not oscillate on the whole
~see the smooth regions in liquid with approximately unifi
concentration in Fig. 4! the tip concentration, the tip under
cooling and the tip velocity change in time~see Fig. 6!. The
frequency of these changes sharply correlates with the or
of new secondary branches far from the dendrite tip. Aris
small secondary branches can disappear quite quickly, en
ing the smooth shape of the needlelike dendrite@see Fig.
4~a!#, or they can gradually grow, providing the evolve
sidebranch surface@see Figs. 4~b!–4~d!#.

In Figs. 5 and 6 we demonstrate the oscillations
dT050.24. Similar oscillations exist under any underco
ings in the system if the kinetic coefficientb50.4 m/~s K!
adopted above is used. At the same model constants we
tained that the oscillations practically disappear atb,0.005.
This fact is circumstantial evidence for our statement abo
not full correlation of the tip surface kinetics and diffusion
the liquid ahead of the tip. Indeed, as soon as the gro
kinetics becomes unsufficiently intensive, the diffusion h
time to remove the accumulated substance from the sur
into the liquid. In this case large, practically nonbranchi
structures of needlelike crystals grow. These nonbranch
structures have been observed in our model under low
dercoolings too.

At the undercoolingdT050.24 the value of the frequenc
of calculated oscillations in the shape near the tip of
dendrite is equal to 109 s21. Therefore, under experimenta
study these possible oscillations may be observed and fi
only by means of special methods of investigation.

VI. SUMMARY AND CONCLUSIONS

We have presented the results of the numerical study
the isothermal free dendrite growth in undercooled bin
dilute liquid. We have used for simulation a time-depend
deterministic model of dendritic solidification in which th
diffusion in liquid and the kinetics of liquid-solid interfac
motion have been taken into account. The numerical solu
of the model was obtained by means of the finite-differen
technique on the square computational lattice, which m

e
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the growth of dendritic patterns with the fourfold symmet
possible.

We examined different types of sidebranch surfaces of
free-growing dendrite as a result of structure bifurcatio
We obtained the morphological spectrum of the dend
sidebranch surface versus the initial undercoolingdT0 in the
region 0.5<dT0<1.2. The increase in undercoolingdT0
leads to the following morphological spectrum:~i! a
needlelike crystal,~ii ! a dense structure of the seconda
branches with the identical space period~structured after a
Hopf-type bifurcation!, ~iii ! a random structure~secondary
structure of branches with the different, not constant, bran
ing period!, ~iv! a doubled period between the seconda
branches~structured after the Feigenbaum bifurcation!, and
~v! a packet structure~fast growing branches with the dens
structure of slow-growing branches between them!. After the
random structure of the secondary branches the cycle f
the needlelike crystal up to the packet structure recurs be
the globular transition. The first, needle dendrite–pac
cycle, was obtained in the range of undercoolin
0.69<dT0<1.065 than the second one. We observed the
ter in the range 1.08<dT0<1.14.

As the unique needlelike shape of the dendrite is sele
from the continuous family of the analytical solutions in t
framework of known models of crystal growth~see Refs.@9,
19, 20#!, the results of the numerical investigations presen
also give the continuous family~i!–~v! of structures from
which the unique structure is selected. Several unique
lected structures are the discrete spectrum within the cont
ous family of the above structures~see Fig. 3!.

In addition, we have found oscillations in the shape of
nonbranching smooth region behind the tip during the m
ments of the secondary branches’ origin. These oscillati
have a continuous character at all stages of crystal gro
even if the secondary branches disappear on the stag
compact crystal growth or when the needlelike crystal gro
in a system. From the physical viewpoint their existence m
be interpreted as a result of the difference between the ra
the diffusion mass transfer near the moving interface and
rate of the surface kinetics.

We have centered on the fact that application of the fin
-
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difference technique to obtaining the continuum model so
tions leads to the formation of structures due to both
undercooling and the scale of the computational lattice. F
ignoring surface tension under high undercoolings, we h
shown that the tip of the dendrite grows without its splittin
because the growth kinetics and also the anisotropic in
ence of the computational lattice have stabilizing actions
the tip growth velocity. This result is in good agreement w
previous works@2,5,10,17,19,20#, where it has been show
that anisotropy is required in the interfacial dynamics to p
duce dendritic growth. Second, we have reason to supp
that a structure such as the random structure in the secon
branches may be defined by the adjustment of the sidebra
surface according to the lattice scale. Here we approac
the problem of the adequate reproduction of structures
continuous systems during phase transitions. As it is kno
the introduction of stochastic parameters, i.e., fluctuati
into a deterministic model, allows one to model quite a
equately complex patterns such as those that are observ
nature and experiments. Ignoring fluctuations, in a co
pletely deterministic model, it is apparently necessary to
a correlation between the lattice scaleh and the scales re
sponsible for the development of structures~in the present
model the diffusion scalehD is such a scale! a priori. In this
case a satisfactory comparison of modeling data with
characteristics of natural structures can be obtained. Th
fore, the present numerical results may also be examined
stimulus for a detailed investigation of the lattice scale eff
on the pattern formation in the discrete analogs of continu
models. The results presented are certain to be useful fo
interpretation of the natural experiments in which the abo
bifurcations in secondary branching will be observed.
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