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Bifurcations in a sidebranch surface of a free-growing dendrite
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We consider a model of a free-growing dendrite in a binary dilute system solidifying under nonequilibrium
conditions. The numerical solution of the model equations was obtained by finite-difference technique on a
two-dimensional square lattice. A special case in which the liquid-solid surface tension is zero and a stabilizing
action on the dendritic form is produced by both the surface kinetics and the anisotropic influence of the
computational lattice was studied. We find that, depending on the initial undercooling and computational lattice
scale, an interesting behavior in the dendrite sidebranch surface is expected. Except for the evolution of the
sidebranch surface realized by regularly repeated doubling of the distances between the secondary branches by
the Feigenbaum scenario, there is a clear tendency for the formation of a needlelike dendrite, structured after
a Hopf-type bifurcation, chaotic structure with random period of branching, packet structure with the branching
period that is not defined by the Feigenbaum scenario. Simulation data are correlated with known conclusions
of the thermodynamical approach to phase transformations, marginal stability theory, and analytical treatments
of the local model of the boundary layer. Satisfactory qualitative agreement with the results given by the
continuum diffusion-limited aggregation model and the modeling of three-dimensional heat flow dendrites has
been found[S1063-651X97)00301-3

PACS numbd(s): 05.70.Fh, 68.70:w

I. INTRODUCTION furcation, which leads to the period doubliig-2\ in the
secondary branches of the free dendrite, the sidebranch sur-
Dendrites are recognized as one manifestation of théace can have a shorter branching period, i.e., the structure of
structural behavior of a dissipative system in condensed meéhe secondary branches becomes more dense. The dendrite
dia under nonequilibrium conditiofd]. The detailed study can also have an abnormally long steady-state undisturbed
of natural dendritic growt{2] and modeling of dendritic area behind the tip3].
structure§ 3-5] lead to an understanding of the main pecu- In one dendritic model of Galenko and Zhuraviéy, an
liarities of tip growth and sidebranch formation during so-increase in the period—2\ for the fast-growing branches
lidification of undercooled liquids. In particular, the marginal has also been found. After a smooth nonbranching area be-
stability theory of dendrite growtf6,7] shows that the tip is hind the tip, the surface of the needlelike crystal becomes
the only point on a dendrite that is stable and sidebrancimorphologically unstable. This instability defines the origin
formation is due to the instability of all other positions of a and development of the secondary branches by a Hopf-type
phase interface. Therefore, among the major types of patterrsfurcation scenaria—\—A\. Then the Feigenbaum transfer
that typically occur during unstable interfacial growth, den-A—2\—4\ may proceed with an intermediate stage of an
drites are patterns with a symmetry of varying degree angccidental change of the branching periogd-3\—2\
without tip splitting(see Ref[1] and Ref[8], pp. 277-278  —6.5\—3\. As the initial undercooling increases, the en-
The search of the dynamical stability criteria of the den-largement of the lateral structure becomes the most advanta-
drite tip and the condition of dendrite sidebranch surfacegeous as\—3\—6\ (see Ref.[1], p. 130, and different
formation lead to the general problem of mode selection irstructures of the dendrite sidebranch surface can occur.
dendritic pattern§2,9]. As in pattern formation during direc- The major purpose of this paper is to establish a possible
tional solidification[10], there is a selection in the side- morphological spectrum of the sidebranch surface after bi-
branch surface of a free-growing dendrite, and the wavefurcations in the structure of a free-growing dendrite. We
length between its secondary branches depends ohow the results of computational experiments from which a
undercooling in a systerfil—5]. variety of virtual types of dendritic sidebranch surfaces arise
In a computer model of a free-growing dendrite, Umant-according to the initial undercooling in the system.
sev, Vinogradov, and Borisd\8] showed that the evolution The paper is organized as follows. In Sec. Il we introduce
of the wave sidebranch structure has a regular doubling ahe mathematical model of dendrite growth in a binary dilute
the period\ between the fast-growing secondary branches ofystem. In Sec. Ill we give the results of the two-dimensional
the Feigenbaum scenario. The perlodaries as double in- modeling the free dendrite growth. Section IV is devoted to
creasesh—2\—4\, along the main stem of the dendrt&. morphologies of the dendrite sidebranch surface that evolve
After a thermodynamical study of isolated adiabatic systemsfrom deeply undercooled binary liquid. In Sec. V we discuss
Umantsev and Olsofl1] remarkably stated that the mecha- the results of modeling the morphological spectrum and how
nism of sequential period doubling is robust for coarseningo grow an area nearest the tip of the free dendrite during
processes in systems with a conserved quantity. In additiofagranching of its surface. Finally, in Sec. VI we present a
Umantsevet al. [3] noted that, besides the Feigenbaum bi-summary of our conclusions.
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FIG. 1. Free dendrite calculated by the lattice model. The growth starts from the initial single seed of the solid phase placed at the central
site of the lattice(a) Various stages in the growth of a dendrite calculated using the initial underca®iligrg0.64 on the 12% 127 lattice.
(b) Dendritic pattern on the 224221 lattice. The initial undercoolingT,=1.39.

Il. MODEL OF DENDRITIC GROWTH andD/a~5x10 * for metallic ones, we can get the estimate

Io/l+<<1. Therefore, the present modeling is restricted by

¥egions whose space scale is essentially larger than the dif-

fusion mass transfer scale but limited by the temperature

P conductivity scale.

i —d _ The model we consider is a special case in which the

ot [(1-6)CL+ Gk ]=dM(1-C)DL gradC.], (1) liquid-solid surface tension equals zero under deep under-
coolings. As it has been shown in RE3), the kinetics of the
particle attachment to the growth surface has a stabilizing

G=1—ex;{ —J(a)/v)V dt),
t

The process of dendrite growth from a supercooled binar
diluted system can be described by the continuum middel

) action on the growth velocity and the shape of the free den-
drite under large undercoolings in the system. In such a case,
the only physical parameter that defines the solution of Egs.

V=A(Ta=TommC), @ @)-@ is the dimensionless undercooling
0To=(Tao—To—mGCy)/Tqy, whereCy is the initial concen-
Cs=kCy. (4 tration of the solute component in the binary system,

) ) o ., To=Q/x is the temperature of adiabatic solidificatiad,is
HereC,_ andCg are the concentrations in the liquid and solid the |atent heat of solidification, andis the heat capacity.
phases, respectively; is the solid phase fractio) is the We obtained the solution of Eq$l)—(4) by the finite-
diffusion constantV is the velocity of the liquid-solid inter-  difference technique on the two-dimensional square lattice.
face along the normal vector pointed towards the liqui, A detailed numerical method of solution of the system of
the time,w is the liquid-solid interface inside the solidifying equations(1)—(4) was developed in the monograph] (see
system,v is the two-phase bulk regiomg is the kinetic co- pp. 137-143 in Ref[1]). It should be noted that at high
efficient of interface motionT , is the temperature of solidi- undercoolings the stabilizing action of the surface energy
fication of the system’s main compondptire substangeT, = may be neglected and also imitated by the anisotropic influ-
is the initial temperature in the systemm, is the tangent of ence of the computational latti¢&]. In such a case, the only
the liquidus line slope on the diagram of phase state of @omputational parameter that influences the structure forma-
binary system, and is the partition coefficient. tion is the space lattice scdl&].

The isothermal conditions of dendritic growth imply that  In the calculations we chose the next physical constants
for the characteristic heat conductivity scdle=a/V, any  applicable to the metal-like binary systeri,=1809 K,
temperature inhomogeneity in the system is smoothed mor€,=0.1 wt. %, m=80 K/wt. %, k=0.1, D=6x10"8 m?s,
rapidly than the concentration inhomogeneitiass the ther- Q=10 J/n?, x=5x10° J(m®K), and 8=0.4 mfs K).
mal diffusivity in the systerh Thus the latent heat is ne- We chose the scaling length Bg=D/V,, the time scale
glected and the system of equatioi3—(4) describes non- as TD=D/V§, and the scale velocity ag,=BTq . The time
equilibrium solidification in isothermal conditions. Defining interval = of the simulation was chosen as 0r48and the
the diffusion scale a$p=D/V (D is the diffusion coeffi- lattice scaleh=2(Dr)Y?<hy, wherehy is the upper limit
cient and evaluatindd/a~10"2 for nonmetallic substances of the lattice scalé.
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FIG. 2. Coarsening structure at the later stage of the dendrite sidebranch surface fodmgt#dn39. The calculation was done on the
451x451 lattice. The initial seed of the solid phase was chosen at the right corner of the lattice. The insetashbe/smooth nearly
parabolic shape near the dendrite tip, which is characterized by the Rdind (b) the angled dendrite with the angle

Taking into account these relations for scaling values anghatterns that can evolve with fourfold symmetry on the
the model constants adopted above, the lattice dvdbe-  square computational lattice.
comes comparable to the value with the diffusion stgje
h=0.8%h, . The inequalitth<hy guarantees the appearance
of the dendrite structure determined by both the kinetics on
the growth surface and the diffusion in the liquid. Figures 1 and 2 show the modeling results of typical den-

By introducing the variabl& that defines the phase state dritic patterns grown at different undercoolings. Figute) 1
(liquid, 1—G, or solid,G) of the system at each point and its clearly illustrates the transition from a compact to a branch-
governing equatior(2), one can apply numerical methods ing crystal structure with fourfold symmetry as the crystal
that avoid the interface moving with the velocky[see Eq. grows larger. A similar change within cluster growth mor-
(3)]. Since the liquid-solid interface width has a distance ofphology is well known when the crossover from a compact
several atomic dimension42], we calculated the region be- cluster to a fractal structure can occur in isotropic systems
tween the phases as a solidifying liquid-solid layex<G  [14].
<1) that has one lattice scale=v/w [1,3] [see Eq.(2)]. The result of the dendrite origin under a higher undercool-
Therefore, the value of the lattice scdlevas chosen to be ing is shown in Fig. tb). The initial dense branching struc-
not smaller than some interatomic distance. That is the loweture on the main stems becomes unstable and the coarsening
limit of the lattice scaléh. In such a case, the discrete finite- process begins. This process is characterized by the appear-
difference analog of Eq(l) describes the diffusion in the ance of fast-growing secondary branches. Evolution of the
liquid (G=0) and solidifying liquid-solid layef0<G<1), coarsening process leads to the origin of the large secondary
which represents the liquid-solid interface. branches on dendritic sidebranch surfa@ae Fig. 2

In our lattice model the simulation of the growth process During the modeling, we observed a transition from the
has been carried out according to the following fule3,13: smooth nearly parabolic shape near the dendrite tip to a
the solid phase can grow only on the solid phase formedharp dendrite tip with planar areas away from it. The latter
before and a nucleation of crystals ahead of the solidificatiolis the so-called angled dendrite that was obtained within the
front is excluded. On the boundary of the lattice domain thdramework of the local model of the boundary lay&6]. As
condition of mass transfer being absence is set. At any poirin the analytical treatmeritl5], we also noticed that there
of the solid phase the concentration remains the same duringas a critical undercooling at which an angled dendrite with
the modeling and is described by Ed). Thus Eqs(1)—(4)  planar areas behind the tip grew instead of a dendrite with a
describe the deterministic model of nonequilibrium growthsmooth, nearly parabolic shafeee the inset in Fig.)2The

Ill. RESULTS OF MODELING
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space period [see Fig. 4b)]. In our model we obtained that
needlelike | Hopf-type |__,|chaotic [ _, A=2h, i.e., the Hopf-type structure bifurcation leads to the
dendrite bifurcation behavior period between the secondary branches, which is equal to the
doubled lattice scale.
Feigenbaum-type chaotic A further increase in the undercooling leads to a random
- oL furcat ] —+|packet |— N structure in the sidebranch surfa@aotic behavior in Fig.
aon behavior 3). This chaotic stage is shown by the different, not constant,
branching period occurring in the secondary structure of
—|needlelike | {Hopf-type |__ |chaotic [ ___ branches along the main stem of the dendrite. Then the den-
dendrite bifurcation behavior drite with the doubling period @ between the secondary
branches occurksee Fig. 4c)]. Every second branch slows
Feigenbaum-type chaotic globular down by its growth velocity and every other second branch
- —*|packet |-— — will grow faster. It is clearly a Feigenbaum scenario in the
bifurcation behavior transition structure formatior{3]. It should be noted that in this sce-

nario the perioch between branches is equal tb and be-

FIG. 3. Scheme of the development of the sidebranch surface afyeen the fast growing branches the period is=Bh. The
a free dendrite with the increase of the initial undercooligina  increase in undercooling leads not only to a new bifurcation
binary dilute system. The arrows show the direction of the underin, the sidebranch surface but also to an increase in the period
cooling 6Ty increase. The “needle-dendrite—packet” cycles in the hatween branches. The similar behaviar=Bh of the pe-
ranges 0.680T(=<1.065 and 1.085To=<1.14 are shown. The o4 goupling along the main stem of the dendrite at different
needle dendrite grows ail(=0.69,1.08; the Hopf bifurcation oc- ,jercoolings was obtained in the model of growth of the
curs at 6T(=0.89,1.09; the _Fglgenbaum bifurcation occurs atp aat dendrite in a pure substari@é Thus, in our model, the
f;rro:;t'g.?’iézé ;hleogzcteltloi'%gs'_sﬂf;}le'O?St’)t'é?’tf;nz?tsio(:]c;)c_structure transition in the sidebranch surface of the dendrite
curs at§T0>1'20’ T g covers the way from the Hopf-type bifurcation to the Feigen-

o baum bifurcation through the chaotic stagee Fig. 3.

planar areas behind the tip have a certain anglestween _ As the initial under_coollng increases, a s‘,‘tructure of the
sidebranch surface arises, which we called “a packet struc-

them[Fig. 2, insettb)]. The value of this angle depends on ture.” In the morphological spectrum the packet structure

undercooling and we observed an angle between planar are . o .
up to a=90° [see the dendritic tips that are at right angles in° tained is in the wake of the structure after the Feigenbaum

Figs. 1b) and 2 structure bifurcatiorisee Fig. 3. The packet structure of the
gs. . - : ... _sidebranch surface has the form of the fast-growing branches
Then, at some new critical undercooling the transition

from the branching structure of the surface to a morphologi-between which a close-packed structure of slow-growing

cally smooth crystal structure occuiisis a so-called globu- Se?f?(gratrgebcrﬁggziSb:ashz\t/lijc?r[?\é?hElgirﬂ?:)t]ﬁre of the second-
lar transition; see Ref§1—3]). An analogous behavior of the

dendrite surface area behind the tip has also been consider %’ g;ae%ﬁgeégtgﬁ;r;gethgglﬁg;gt:;?uﬁh:zerecécig ];E?gm
by means of the local model of the boundary lay5]. 3). The first cycle, the needlelike-dendrite—packet structure,

was obtained in the range of undercoolings 0.69
IV. MORPHOLOGICAL SPECTRUM <6T,<1.065. We observed the same second cycle in the
OF A FREE DENDRITE range 1.08&6T,<1.14. After the cycle and chaotic behavior
wih the secondary structure of branches&,=1.165, the
¢ globular transition occurs at the undercooling$,>1.20
(see Fig. 3 We observed the globular transition as a transi-
tion to the morphologically smooth growth front.

For a detailed study of the dendrite sidebranch surface
consider the growth from an initially smooth planar fron
with one perturbation, i.e., with a single solid seed on it.
Having the better conditions for the growth, the seed pertur
bation grows faster than the planar front. The main solidifi-
cation front retards progressively because of buildup of sol-
ute ahead of it. The result is the evolved structure of the
dendritic type that forms under the conditions of a small Considering the morphological spectrum of the dendrite
influence from the concentration field ahead of the main sosidebranch surface, we chose intentionally relatively small
lidification front. calculating domaing181x181 lattice sites; see Fig, 4hat

We calculated patterns on the 18181 lattice in the re- were also limited by the temperature conductivity sdakee
gion of undercoolings: 0586T,<1.2. Figure 3 shows sche- Sec. l). In essence, we show the results of the evolved side-
matically the evolution of the sidebranch surface, i.e., thébranch surfaces that were formed during the initial stages of
secondary branches along the main stem of the dendrite veselidification. Indeed, if one follows the evolution of the den-
sus the initial undercooling in the system. dritic structure on the larger calculating domains, it is pos-

During the sidebranch surface formation the number ofible to discover the fast-growing secondary branches origin
structure bifurcations depends on the initial undercooling. Asn the dense structure of the secondary brandhempare
the undercooling increases, the surface of the needlelikthe dendritic structures in Figs.(B), 1(b), and 2. It is a
crystal [see Fig. 4a)] becomes unstable and undergoes acoarsening process in growth form. As a rule, the distance
Hopf-type bifurcation. The result is the formation of the between these secondary fast-growing branches is not de-
dense structure of the secondary branches with the identiched by a number that is a multiple of the doubled period,

V. DISCUSSION
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FIG. 4. lllustration of the different types of free-growing dendritic structures in the two-dimensional computer fapdeheedlelike
dendrite at6T(=0.69, (b) a dendritic structure after a Hopf-type bifurcation in the sidebranch surfa&€,at0.89, (c) a dendritic structure
after a Feigenbaum bifurcation in the sidebranch surfacéTg&1.04, and(d) a packet structure of the dendrite sidebranch surface at
6T,=1.065. Close to the dendritic surfaces, the concentration field in the liquid decreasing in the direction from light to dark color is shown.

i.e., more complex structures at the late stages of the crystabnstants the results of the present modeling clearly demon-
growth origin. As it was established in Liu and Goldenfeld strate that besides the evolution of the secondary branch
modeling[13], in the complex crystal growth process at the structure realized by regularly repeated doubling of distances
late stage, both the nonlinear and the steady-state selectitetween the secondary branches, there is a clear tendency for
principles are present. As applied to the results of our modthe formation of structures with random branching period,
eling, this means the following. First, the tip is stable and thepacket structures with the branching period that is not de-
crystal surface is unstablghe steady-state selection prin- fined by the Feigenbaum scenario, needlelike crystal, and the
ciple or, in other words, the marginal stability principle structure after the Hopf-type bifurcatideee Figs. 3 and)4
[6,7]). Second, the coarsening process is conditioned by th&his variety found in the discrete finite-difference analog of
interaction of the diffusion fields between the secondarjthe continuum mode{1l)—(4) exhibits not only the mecha-
branchegnonlinear selection principle nism of sequential period doubling as at the coarsening struc-
Within the limits of the adopted assumptions and modelure stages in a continuum isolated adiabatic systsa Ref.
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[11]), but also other mechanisms of the dendrite surface for- A plausible explanation of the double structure cycle fol-
mation (see Fig. 4 In the present investigation when the lows. As is well known, when the surface tension is zero or
binary dilute system solidifies under isothermal conditions, itisotropic and surface kinetics is isotropic, dendritic growth
is possible to suppose that near the hypercoofifig=1 or  does not occur, but rather tip splitting of growing fingers
behind the hypercoolingT,>1 the nearly adiabatic system [5,8,16,17. With both surface tension and anisotropy
and the adiabatic system are realized, respectively. Thpresent, the unique stable needle crystal is selected from the
conserved quantity in  the  system is C,  continuous family of analytical solutions found by Ivantsov
=N"13[(1-G)C_+GCg, where S is the sum over all [18] and a dendrite having the secondary branches grows
lattice sites andN is the total number of lattice sites. The with the velocity equal to the maximum value of the velocity
results of our modelingsee Figs. 3 and)4ndicate that the from the family[9,19]. Notwithstanding the fact that in our
solidifying binary system has a crystal growth scenario instatement of the problem we assumed a zero surface tension,
which the period doubling in the dendrite sidebranch surfacan anisotropy of surface kinetics was set by us at the level of
is not the only possible one. For example, the nonequilibriunthe computational lattice as soon as we passed from con-
coarsening process also leads to the packet strukige  tinuum equationg1)—(4) to their finite-difference analogs.
4(d)]. The answer is the adjustment of the structure accordThis leads to the dendritic growth of the crystal without tip
ing to both the undercooling and the lattice scale. splitting. Furthermore, the continuous family consisting of
When the shape of needlelike crystilg. 4(@)] is carried  the needlelike crystals, dendrites after Hopf and Feigenbaum
out beyond the threshold of morphological stabilify2,5—  bifurcations, and the packet structures is the spectrum of vir-
7,13] the origin of the secondary branches ocdiig. 4(b)].  tual crystal structures. From this continuous family the
The distance between them s In our model we obtained unique structure is selected at fixed undercooling. As the
that \=2h [Fig. 4b)], i.e., the Hopf-type structure bifurca- needlelike shape of the dendrite is selected from the continu-
tion leads to a period between the secondary branches equalis family of the solution$9,19,20, the present numerical
to the doubled lattice scale. This is explained by the fact thasolution also gives the discrete family of the above struc-
the lattice scalédr chosen by us was a little smaller than the tures. Thus, for every virtual structure we obtained the dis-
diffusion scalehp that defines the scale of local instability in crete family of stable growth form in the continuous family
the growth form. If one accepts* =0.5n,, it is possible to  of the numerical solutionésee Fig. 3.
see that after the same modeling time the numerical value of In contrast to various investigations in which the tip ra-
the distance between the secondary branches after the Homfius was calculated in detaisee, for example, Ref§2,5])
type bifurcation remains the same, i.e54h*=2h. by means of the well-known Ivantsov solution for a para-
An interaction of the diffusion fields of neighboring bolic dendritd 18], in our investigation the shape near the tip
branches leads to nonequilibrium coarsening of the secondvas not parabolic. In our model the shape near the tip be-
ary branchegsee Fig. 4c)]. This phenomenon consists in the came nearly parabolic in the region 005T,<<0.1, while in
fact that every second branch slows down in its developmerthe process of growth of the dendrite the current undercool-
and after some time may be “caught” by a neighboringing 6T=(To—To—mGC_)/Tq on its surface gradually de-
branch. As a result, the distance between fast-growingreased practically to zerdln the region of the initial un-
branches increases and becomes equal to the pexie6i2 dercoolingssT(<<0.005 the growth of the dendritic branches
The chaotic regime, as an adjustment of the structure accordvas accompanied by the splitting of its {tipn this connec-
ing to the undercooling and simultaneously to the latticetion, for the statement of the behavior of the tip growth we
scale, leads to the next type of bifurcation: the Hopf-typecalculated the total area of a certain nonbranching region
structure bifurcation gives way to the Feigenbaum scenaribehind the tip.
(see Fig. 3. A further increase in the undercooling and in-  During the growth process we calculated the area of the
teraction of the diffusion fields between the secondarynonbranching region all the way from the tip up th fom
branches lead to a nontrivial coarsening of the sidebranch. We calculated the solid fractio® in all lattice sites that
surface, i.e., to the packet structure of the secondaryere occupied by the solifz=1) and the liquid-solid0<G
branches. The distance between fast-growing branchesl) phases. Shown in Fig. 5 is a dependence of the Bfea
within the packet structure can be different and, generallynear the dendrite tip versus the modeling tite HereX is
speaking, not a multiple of bifurcations of the period dou-the area equal to the total value of the solid phase in the solid
bling. Thus the different types of crystal structures may de-and liquid-solid sites of the nonbranching region near the tip
pend on the lattice scakeand the initial undercoolingT, in andty is the time equal to the quantity of the numerical
a binary systen{see also pp. 125-127 and Fig. 4.4 in Ref. stepsr of simulation.
[1]). We distinguished three stages in the evolution of the crys-
In the behavior of structures of the growing crystals, usutal: the nonbranching compact crystal, the developed den-
ally three dynamic regimes are distinguisijiéé]: the nearly  dritic crystal, and the final stage of growth on the calculating
equilibrium behavior(nonequilibrium crystal, the shape of domain. These time intervals froAdto C are shown in Fig.
which is defined by the Curie-Wolff rulethe ordering struc- 5. It can be seen that the area near the dendrite tip oscillates
ture origin (fine snowflake forms and the random structure about some steady-state value. This area oscillates with time
origin (crystals with random period of branching or fracals intervals determined by the beginning of the next branching
All these three types of structures were obtained in ouon the surface of the dendrite. An analogous oscillation de-
model. However, they are distributed in such a way that thggendence was found in the continuum diffusion-limited ag-
double structure cycle, the needlelike-dendrite—packet strugregation model with anisotropic surface tensjat] and in
ture, occurs before the globular transititffig. 3). the model of three-dimensional heat flow dendr(t23].
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5 FIG. 5. Dependence of the
i areaX; of the nonbranching re-
55l gion behind the dendrite tip on the
time ty, of numerical simulation.
sl The initial undercooling
6T(=0.24. HereA is the time pe-
L riod where the compact crystal
grows, B is the time period of the
developed dendrite growth, arii
, ® S @ is the time period where the final
stages of the dendrite growth oc-
cur within a calculating domain.
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To try to smooth these oscillations, we also calculatedveakly. In particular, this means that the accumulation of the
Egs.(1)—(4) on a half time step 05 However, oscillations substance, its removal, and its surface kinetics do not act
in 31 remained the same by amplitude and their frequencgimultaneously at the time step Notwithstanding that the
corresponded to the origin of the secondary branches on thdomains with the set, approximately similar, ranges of con-
main stem of the dendrite as before. If these oscillations areentration as long as sevefaldo not oscillate on the whole
not an artifact of the numerical method and solution of the(see the smooth regions in liquid with approximately unified
problem, then we may interpret this result from the physicalconcentration in Fig. ¥the tip concentration, the tip under-
viewpoint as follows. cooling and the tip velocity change in tinisee Fig. 6. The

Defining the tip velocity numerically, we obtained that the frequency of these changes sharply correlates with the origin
diffusion inside the liquidsee Eq.1)] and surface kinetics of new secondary branches far from the dendrite tip. Arising
[see Egs(2) and(3)] do not have a sharp correlation at one small secondary branches can disappear quite quickly, ensur-
time stepr. In principle, this makes the tip velocity and the ing the smooth shape of the needlelike dendfitee Fig.
crystal shape oscillate near the dendrite tip. Presented in Fig(a)], or they can gradually grow, providing the evolved
6 is a change in the current undercooling sidebranch surfacksee Figs. &)—4(d)].
O0T=(To—Ty—mC)/Tq at the tip and ahead of it during In Figs. 5 and 6 we demonstrate the oscillations at
the stage of dendritic growtttime intervalB in Fig. 5). It 6To=0.24. Similar oscillations exist under any undercool-
can be seen that in our time-dependent model the undercodhgs in the system if the kinetic coefficie=0.4 m{s K)
ing T and also the tip velocityy [see Eq.(3)] oscillate  adopted above is used. At the same model constants we ob-

tained that the oscillations practically disappeapat0.005.

This fact is circumstantial evidence for our statement about a

2 not full correlation of the tip surface kinetics and diffusion in

ool the liquid ahead of the tip. Indeed, as soon as the growth
kinetics becomes unsufficiently intensive, the diffusion has
time to remove the accumulated substance from the surface
into the liquid. In this case large, practically nonbranching
structures of needlelike crystals grow. These nonbranching
structures have been observed in our model under low un-
dercoolings too.
0100 At the undercoolingdT,=0.24 the value of the frequency
of calculated oscillations in the shape near the tip of the
dendrite is equal to £0s L. Therefore, under experimental
study these possible oscillations may be observed and fixed
L only by means of special methods of investigation.

0125

UNDERCOOL ING

0.075

VI. SUMMARY AND CONCLUSIONS

DIMENSIONLESS

0.09|-

! ! . , We have presented the results of the numerical study of
1000 o e e we g, the isothermal free dendrite growth in undercooled binary
dilute liquid. We have used for simulation a time-dependent
FIG. 6. Current undercoolingT versus the numerical simula- deterministic model of dendritic solidification in which the
tion time ty, corresponding to 1, the liquid pha¢e=0) immedi-  diffusion in liquid and the kinetics of liquid-solid interface
ately ahead of the dendrite tip; and 2, the dendrite tip where thénotion have been taken into account. The numerical solution
liquid-solid phase(0<G<1) is present. The initial undercooling Of the model was obtained by means of the finite-difference
8Ty=0.24. technigue on the square computational lattice, which made
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the growth of dendritic patterns with the fourfold symmetry difference technique to obtaining the continuum model solu-
possible. tions leads to the formation of structures due to both the

We examined different types of sidebranch surfaces of thendercooling and the scale of the computational lattice. First,
free-growing dendrite as a result of structure bifurcationsignoring surface tension under high undercoolings, we have
We obtained the morphological spectrum of the dendriteshown that the tip of the dendrite grows without its splitting
sidebranch surface versus the initial undercooliiig in the  because the growth kinetics and also the anisotropic influ-
region 0.556T,<1.2. The increase in undercoolingdT, ence of the computational lattice have stabilizing actions on
leads to the following morphological spectrum(i) a  the tip growth velocity. This result is in good agreement with
needlelike crystalfii) a dense structure of the secondary previous workg2,5,10,17,19,2]) where it has been shown
branches with the identical space peri@iructured after a that anisotropy is required in the interfacial dynamics to pro-
Hopf-type bifurcation, (i) a random structurésecondary duce dendritic growth. Second, we have reason to suppose
structure of branches with the different, not constant, branchthat a structure such as the random structure in the secondary
ing period, (iv) a doubled period between the secondarybranches may be defined by the adjustment of the sidebranch
branchegqstructured after the Feigenbaum bifurcajioand  surface according to the lattice scale. Here we approached
(v) a packet structuréast growing branches with the dense the problem of the adequate reproduction of structures in
structure of slow-growing branches between the#tfter the  continuous systems during phase transitions. As it is known,
random structure of the secondary branches the cycle frorthe introduction of stochastic parameters, i.e., fluctuations
the needlelike crystal up to the packet structure recurs befori@to a deterministic model, allows one to model quite ad-
the globular transition. The first, needle dendrite—packetequately complex patterns such as those that are observed in
cycle, was obtained in the range of undercoolingsnature and experiments. Ignoring fluctuations, in a com-
0.69<6T,=<1.065 than the second one. We observed the latpletely deterministic model, it is apparently necessary to set
ter in the range 1.086T,<1.14. a correlation between the lattice scdleand the scales re-

As the unique needlelike shape of the dendrite is selectesponsible for the development of structul@s the present
from the continuous family of the analytical solutions in the model the diffusion scalbp is such a scaea priori. In this
framework of known models of crystal growthee Refs[9, case a satisfactory comparison of modeling data with the
19, 20), the results of the numerical investigations presenteadharacteristics of natural structures can be obtained. There-
also give the continuous famili)—(v) of structures from fore, the present numerical results may also be examined as a
which the unique structure is selected. Several unique sestimulus for a detailed investigation of the lattice scale effect
lected structures are the discrete spectrum within the continwen the pattern formation in the discrete analogs of continuum
ous family of the above structurésee Fig. 3. models. The results presented are certain to be useful for the

In addition, we have found oscillations in the shape of theinterpretation of the natural experiments in which the above
nonbranching smooth region behind the tip during the mobifurcations in secondary branching will be observed.
ments of the secondary branches’ origin. These oscillations
have a continuous character at all stages of crystal growth
even if the secondary branches disappear on the stage of
compact crystal growth or when the needlelike crystal grows This research was made possible in part by Grant No.
in a system. From the physical viewpoint their existence mayl5F100 from the International Science Foundation and Rus-
be interpreted as a result of the difference between the rate sfan Government. P.K.G. thanks the International Atomic
the diffusion mass transfer near the moving interface and th&nergy Agency and UNESCO for the kind hospitality at the
rate of the surface kinetics. International Center for Theoretical Physics, Trieste, Italy,

We have centered on the fact that application of the finitewhere part of this work was carried out.
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